17 research outputs found

    Chimera states: The Existence Criteria Revisited

    Full text link
    Chimera states, representing a spontaneous break-up of a population of identical oscillators that are identically coupled, into sub-populations displaying synchronized and desynchronized behavior, have traditionally been found to exist in weakly coupled systems and with some form of nonlocal coupling between the oscillators. Here we show that neither the weak-coupling approximation nor nonlocal coupling are essential conditions for their existence. We obtain for the first time amplitude-mediated chimera states in a system of globally coupled complex Ginzburg-Landau oscillators. We delineate the dynamical origins for the formation of such states from a bifurcation analysis of a reduced model equation and also discuss the practical implications of our discovery of this broader class of chimera states.Comment: 5 pages, 5 figure

    Stability of networks of delay-coupled delay oscillators

    Full text link
    Dynamical networks with time delays can pose a considerable challenge for mathematical analysis. Here, we extend the approach of generalized modeling to investigate the stability of large networks of delay-coupled delay oscillators. When the local dynamical stability of the network is plotted as a function of the two delays then a pattern of tongues is revealed. Exploiting a link between structure and dynamics, we identify conditions under which perturbations of the topology have a strong impact on the stability. If these critical regions are avoided the local stability of large random networks can be well approximated analytically

    Synchronous solutions and their stability in nonlocally coupled phase oscillators with propagation delays

    Full text link
    We study the existence and stability of synchronous solutions in a continuum field of non-locally coupled identical phase oscillators with distance-dependent propagation delays. We present a comprehensive stability diagram in the parameter space of the system. From the numerical results a heuristic synchronization condition is suggested, and an analytic relation for the marginal stability curve is obtained. We also provide an expression in the form of a scaling relation that closely follows the marginal stability curve over the complete range of the non-locality parameter.Comment: accepted in Phys. Rev. E (2010

    Experimental observation of extreme multistability in an electronic system of two coupled R\"{o}ssler oscillators

    Get PDF
    We report the first experimental observation of extreme multistability in a controlled laboratory investigation. Extreme multistability arises when infinitely many attractors coexist for the same set of system parameters. The behavior was predicted earlier on theoretical grounds, supported by numerical studies of models of two coupled identical or nearly identical systems. We construct and couple two analog circuits based on a modified coupled R\"{o}ssler system and demonstrate the occurrence of extreme multistability through a controlled switching to different attractor states purely through a change in initial conditions for a fixed set of system parameters. Numerical studies of the coupled model equations are in agreement with our experimental findings.Comment: to be published in Phys. Rev.

    Clustered chimera states in delay coupled oscillator systems

    Full text link
    We investigate "chimera" states in a ring of identical phase oscillators coupled in a time-delayed and spatially non-local fashion. We find novel "clustered chimera" states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in anti-phase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications

    Excitable Dynamics in the Presence of Time Delay

    Full text link
    The spiking properties of a subcritical Hopf oscillator with a time delayed nonlinear feedback is investigated. Finite time delay is found to significantly affect both the statistics and the fine structure of the spiking behavior. These dynamical changes are explained in terms of the fundamental modifications occurring in the bifurcation scenario of the system. Our mathematical model can find useful applications in understanding the dynamical behaviour of various real life excitable systems where propagation delay effects are ubiquitous.Comment: 10 pages including 7 figure

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore